Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. Dry deposition of ozone (O3) to the ocean surface and the ozonolysis of organics in the sea surface microlayer (SSML) are potential sources of volatile organic compounds (VOCs) to the marine atmosphere. We use a gas chromatography system coupled to a Vocus proton-transfer-reaction time-of-flight mass spectrometer to determine the chemical composition and product yield of select VOCs formed from ozonolysis of coastal seawater collected from Scripps Pier in La Jolla, California. Laboratory-derived results are interpreted in the context of direct VOC vertical flux measurements made at Scripps Pier. The dominant products of laboratory ozonolysis experiments and the largest non-sulfur emission fluxes measured in the field correspond to Vocus CxHy+ and CxHyOz+ ions. Gas chromatography (GC) analysis suggests that C5–C11 oxygenated VOCs, primarily aldehydes, are the largest contributors to these ion signals. In the laboratory, using a flow reactor experiment, we determine a VOC yield of 0.43–0.62. In the field at Scripps Pier, we determine a maximum VOC yield of 0.04–0.06. Scaling the field and lab VOC yields for an average O3 deposition flux and an average VOC structure results in an emission source of 10.7 to 167 Tg C yr−1, competitive with the DMS source of approximately 20.3 Tg C yr−1. This study reveals that O3 reactivity to dissolved organic carbon can be a significant carbon source to the marine atmosphere and warrants further investigation into the speciated VOC composition from different seawater samples and the reactivities and secondary organic aerosol (SOA) yields of these molecules in marine-relevant, low NOx conditions.more » « less
- 
            Abstract. The exchange of trace gases between the biosphere and the atmosphere is an important process that controls both chemical and physical properties of the atmosphere with implications for air quality and climate change. The terrestrial biosphere is a major source of reactive biogenic volatile organic compounds (BVOCs) that govern atmospheric concentrations of the hydroxy radical (OH) and ozone (O3) and control the formation andgrowth of secondary organic aerosol (SOA). Common simulations of BVOCsurface–atmosphere exchange in chemical transport models use parameterizations derived from the growing season and do not considerpotential changes in emissions during seasonal transitions. Here, we useobservations of BVOCs over a mixed temperate forest in northern Wisconsinduring broadleaf senescence to better understand the effects of the seasonal changes in canopy conditions (e.g., temperature, sunlight, leaf area, and leaf stage) on net BVOC exchange. The BVOCs investigated here include the terpenoids isoprene (C5H8), monoterpenes (MTs; C10H16), a monoterpene oxide (C10H16O), and sesquiterpenes (SQTs; C15H24), as well as a subset of other monoterpene oxides and dimethyl sulfide (DMS). During this period, MTs were primarily composed of α-pinene, β-pinene, and camphene, with α-pinene and camphene dominant during the first half of September and β-pinene thereafter. We observed enhanced MT and monoterpene oxide emissions following the onset of leaf senescence and suggest that senescence has the potential to be a significant control on late-season MT emissions in this ecosystem. We show that common parameterizations of BVOC emissions cannot reproduce the fluxes of MT, C10H16O, and SQT during the onset and continuation of senescence but can correctly simulate isoprene flux. We also describe the impact of the MT emission enhancement on the potential to form highly oxygenated organic molecules (HOMs). The calculated production rates of HOMs and H2SO4, constrained by terpene and DMS concentrations, suggest that biogenic aerosol formation and growth in this region should be dominated by secondary organics rather than sulfate. Further, we show that models using parameterized MT emissions likely underestimate HOM production, and thus aerosol growth and formation, during early autumn in this region. Further measurements of forest–atmosphere BVOC exchange during seasonal transitions as well as measurements of DMS in temperate regions are needed to effectively predict the effects of canopy changes on reactive carbon cycling and aerosol production.more » « less
- 
            Abstract. Oceanic emissions of dimethyl sulfide (CH3SCH3,DMS) have long been recognized to impact aerosol particle composition andsize, the concentration of cloud condensation nuclei (CCN), and Earth'sradiation balance. The impact of oceanic emissions of methanethiol(CH3SH, MeSH), which is produced by the same oceanic precursor as DMS,on the volatile sulfur budget of the marine atmosphere is largelyunconstrained. Here we present direct flux measurements of MeSH oceanicemissions using the eddy covariance (EC) method with a high-resolutionproton-transfer-reaction time-of-flight mass spectrometer (PTR-ToFMS)detector and compare them to simultaneous flux measurements of DMS emissionsfrom a coastal ocean site. Campaign mean mixing ratios of DMS and MeSH were72 ppt (28–90 ppt interquartile range) and 19.1 ppt (7.6–24.5 pptinterquartile range), respectively. Campaign mean emission fluxes of DMS (FDMS) and MeSH (FMeSH) were 1.13 ppt m s−1 (0.53–1.61 ppt m s−1 interquartile range) and 0.21 ppt m s−1 (0.10–0.31 ppt m s−1 interquartile range), respectively. Linear least squares regression of observed MeSH and DMS flux indicates the emissions are highly correlatedwith each other (R2=0.65) over the course of the campaign,consistent with a shared oceanic source. The campaign mean DMS to MeSH fluxratio (FDMS:FMeSH) was 5.5 ± 3.0, calculated from the ratio of 304 individual coincident measurements of FDMS and FMeSH. Measured FDMS:FMeSH was weakly correlated (R2=0.15) withocean chlorophyll concentrations, with FDMS:FMeSH reaching a maximumof 10.8 ± 4.4 during a phytoplankton bloom period. No other volatilesulfur compounds were observed by PTR-ToFMS to have a resolvable emissionflux above their flux limit of detection or to have a gas-phase mixing ratio consistently above their limit of detection during the study period,suggesting DMS and MeSH are the dominant volatile organic sulfur compoundsemitted from the ocean at this site. The impact of this MeSH emission source on atmospheric budgets of sulfurdioxide (SO2) was evaluated by implementing observed emissions in a coupled ocean–atmosphere chemical box model using a newly compiled MeSHoxidation mechanism. Model results suggest that MeSH emissions lead toafternoon instantaneous SO2 production of 2.5 ppt h−1, which results in a 43 % increase in total SO2 production compared to a casewhere only DMS emissions are considered and accounts for 30% of theinstantaneous SO2 production in the marine boundary layer at the meanmeasured FDMS and FMeSH. This contribution of MeSH to SO2production is driven by a higher effective yield of SO2 from MeSHoxidation and the shorter oxidation lifetime of MeSH compared to DMS. Thislarge additional source of marine SO2 has not been previouslyconsidered in global models of marine sulfur cycling. The field measurementsand modeling results presented here demonstrate that MeSH is an importantcontributor to volatile sulfur budgets in the marine atmosphere and must be measured along with DMS in order to constrain marine sulfur budgets. Thislarge additional source of marine–reduced sulfur from MeSH will contribute to particle formation and growth and CCN abundance in the marine atmosphere, with subsequent impacts on climate.more » « less
- 
            Abstract. The oxidation of dimethyl sulfide (DMS;CH3SCH3), emitted from the surface ocean, contributes to theformation of Aitken mode particles and their growth to cloud condensationnuclei (CCN) sizes in remote marine environments. It is not clear whetherother less commonly measured marine-derived, sulfur-containing gases sharesimilar dynamics to DMS and contribute to secondary marine aerosolformation. Here, we present measurements of gas-phase volatile organosulfurmolecules taken with a Vocus proton-transfer-reaction high-resolutiontime-of-flight mass spectrometer during a mesocosm phytoplankton bloomexperiment using coastal seawater. We show that DMS, methanethiol (MeSH;CH3SH), and benzothiazole (C7H5NS) account for on averageover 90 % of total gas-phase sulfur emissions, with non-DMS sulfur sourcesrepresenting 36.8 ± 7.7 % of sulfur emissions during the first 9 d of the experiment in the pre-bloom phase prior to major biologicalgrowth, before declining to 14.5 ± 6.0 % in the latter half of theexperiment when DMS dominates during the bloom and decay phases. The molarratio of DMS to MeSH during the pre-bloom phase (DMS : MeSH = 4.60 ± 0.93) was consistent with the range of previously calculated ambient DMS-to-MeSH sea-to-air flux ratios. As the experiment progressed, the DMS to MeSHemission ratio increased significantly, reaching 31.8 ± 18.7 duringthe bloom and decay. Measurements of dimethylsulfoniopropionate (DMSP),heterotrophic bacteria, and enzyme activity in the seawater suggest theDMS : MeSH ratio is a sensitive indicator of the bacterial sulfur demand andthe composition and magnitude of available sulfur sources in seawater. Theevolving DMS : MeSH ratio and the emission of a new aerosol precursor gas,benzothiazole, have important implications for secondary sulfate formationpathways in coastal marine environments.more » « less
- 
            Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.more » « less
- 
            A<sc>bstract</sc> An angular analysis ofB0→ K*0e+e−decays is presented using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The analysis is performed in the region of the dilepton invariant mass squared of 1.1–6.0 GeV2/c4. In addition, a test of lepton flavour universality is performed by comparing the obtained angular observables with those measured inB0→ K*0μ+μ−decays. In general, the angular observables are found to be consistent with the Standard Model expectations as well as with global analyses of otherb → sℓ+ℓ−processes, whereℓis either a muon or an electron. No sign of lepton-flavour-violating effects is observed.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            The branching fraction of the decay , relative to the topologically similar decay , is measured using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio is found to be , where the first uncertainty is statistical and the second systematic. Using the world-average branching fraction for , the branching fraction for the decay is found to be , where the first uncertainty is statistical, the second systematic, and the third is due to the branching fraction of the normalization channel. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
